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All algebras are of a finite (fixed) type.

Definition. A nontrivial class Q of algebras is a quasi-
variety if it is closed under I (taking isomorphic algebras),
S (subalgebras), P (products) and PU (ultraproducts).

Definition. The quasi-variety Q(A) generated by an
algebra A is the smallest quasi-variety containing A.

Definition. A quasi-identity is a formula of the form
(p1 ≈ q1 & . . . & pn ≈ qn)→ p ≈ q.

Theorem. A class of algebras Q is a quasi-variety if
and only if Q can be axiomatized by quasi-identities.

Definition. An algebra A is finitely q-based if Q(A)
can be finitely axiomatized (by quasi-identities). A is
inherently nonfinitely q-based if there is no finitely ax-
iomatizable locally finite quasi-variety containing A.

Problem (The finite quasi-equational base problem). Is
it decidable for a finite algebra if it is finitely q-based?
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Definition. An algebra A is a semilattice algebra if its
signature contains (among other symbols) a binary symbol
∧ (the meet) such that

(1) 〈A;∧〉 is a semilattice.

A is said to be compatible if it satisfies the equations

(2) f (z1, . . . , zi−1, x ∧ y, zi+1, . . . , zn) ≈
f (. . . , x, . . . ) ∧ f (. . . , y, . . . ) for every n-ary oper-
ation f of σ and every i ∈ {1, . . . , n}.

Example. The following are compatible semilattice al-
gebras:

• digraph algebras
• semilattices with a finite set of endomorphisms
• flat algebras over any quasigroup
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Definition. For a variable x, basic x-terms of depth n
are defined as follows. The term x is the only basic x-
term of depth 0. For n > 0, basic x-terms of depth n are
the terms f (z1, . . . , zi−1, t, zi+1, . . . , zn) such that f is an
n-ary basic operation, 1 ≤ i ≤ n, t is a basic x-term of
depth n− 1 and z1, . . . , zn are variables different from x.

A basic polynomial of A is a unary polynomial p(x) =
t(x; a1, a2, . . . ) where t(x; z1, z2, . . . ) is a basic x-term
and a1, a2, . . . ∈ A.

Fact. A semilattice algebra A is compatible if and only
if p(a ∧ b) = p(a) ∧ p(b) for all basic polynomials p of
A and all elements a, b ∈ A.

Fact. Let A be a compatible semilattice algebra and F
be a filter of A. Then for every basic polynomial p of
A, p−1(F ) is either empty or a filter of A.
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Lemma. Let A be a compatible semilattice algebra and
F be a filter of A. Put

CF = { p−1(F ) : p is a basic polynomial of A }
ϑF =

⋂
{H2 ∪ (A \H)2 : H ∈ CF }.

Then ϑF is a congruence of A.
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Lemma. Let A be a compatible semilattice algebra,
F be a principal filter generated by a join irreducible
element d ∈ A, and c ∈ A be the unique lower cover
of d. Then ϑF is the largest congruence that does not
collapse c and d; ϑF and CgA(c, d) form a splitting
pair of congruences in Con A.
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We fix a finite compatible semilattice algebra A. Put
K = |A|.

Definition. Denote by Q1 the quasi-variety determined
by the equations (1) and (2) and for every

(
K+1

2

)
-tuple

of basic x-terms t1,2, t1,3, . . . , tK,K+1 of depth ≤ K + 1,

and every
(
K+1

2

)
-tuple ε1,2, ε1,3, . . . , εK,K+1 ∈ {0, 1} the

following quasi-equation γt̄,ε̄

(3) (x ≤ y & D1,2 & D1,3 & . . . & DK,K+1)→ x ≈ y

where

Di,j =

{
ti,j(ui) ≥ y & ti,j(uj) ∧ y ≤ x if εi,j = 0,

ti,j(uj) ≥ y & ti,j(ui) ∧ y ≤ x if εi,j = 1.

Lemma. The quasi-variety Q1 is finitely axiomatized
and contains A.
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Lemma. Let B ∈ Q1, a, b ∈ B two elements such that
b 6≤ a, and let F be a maximal filter of B such that
b ∈ F and a 6∈ F . Then CF = {p−1

1 (F ), . . . , p−1
r (F )}

for some r ≤ K and basic polynomials p1, . . . , pr of B
of depth ≤ K. Moreover, |B/ϑF | ≤ K.
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Corollary.Q1 is locally finite; every algebra of Q1 is
a subdirect product of algebras of size ≤ K. Conse-
quently, A is not inherently nonfinitely q-based.

9



Definition. Denote by Q2 the quasi-variety determined
by the quasi-equations (1) − (3) and all quasi-equations
in at most K variables that are satisfied in A.

Theorem. Let B ∈ Q2, a, b ∈ B two elements such
that b 6≤ a, and let F be a maximal filter of B such that
b ∈ F and a 6∈ F . Then B/ϑF ∼= C/ϑH where C is a
subalgebra of A and H is a principal filter generated
by a join irreducible element of C.
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Corollary. Let A be a finite compatible semilattice al-
gebra such that HS(A) ⊆ Q(A). Then A is finitely
q-based.

Corollary. Every finite digraph algebra is finitely q-
based.

Corollary. The flat algebra over any finite quasigroup
(considered as a groupoid) is finitely q-based.

Corollary. Let A = 〈A;∧, 0, f〉 be a finite flat com-
patible semilattice algebra with a unary operation f .
Then A is finitely q-based.

11



Theorem. Let σ be a finite signature containing, in
addition to ∧ and 0, at least two unary symbols f and g
(and, possibly, some other operation symbols). Then
every finite compatible flat σ-algebra can be embedded
into two finite compatible flat σ-algebras, one finitely
q-based and the other one not finitely q-based.
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Problem. Is it decidable for a finite compatible semilat-
tice algebra if it is finitely q-based?

Problem. Find the analog of the residual character of
V(A) for the quasi-variety Q(A) which (under some re-
strictions) would imply that A is or is not finitely q-based.

Conjecture. Let A be a finite compatible semilattice
algebra, and N be a positive integer. Then there exists a
finite set Γ of quasi-equations such that for all semilattice
algebras B of depth≤ N , B ∈Q(A) if and only if B |= Γ.
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